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Absbact-The stress concentration of a cylindrical bar with a semi-elliptical circumferential 
notch under bending is.analyzed on the basis of the basic theory established in the first paper. 
The stress concentration factors are systematically calculated for various combination of notch 
dimensions. It is found that the stress concentration factors by so-called Neuber’s trigonometric 
rule has non-conservative error of about 7% for wide range of notch depth. The stress con- 
centration factors are ilhtstrated in the charts so as to be used easily in designs or researches. 
The effect of notch shape on the stress distribution at a minimum section is also discussed from 
the viewpoint of the notch effect in fatigue strength of notched cylindrical bars. The error of 
the stress concentration factors obtained in the present analysis is less than I% for the worst 
cases (very deep notch) and less than 0.1% for most cases. 

1. INTRODUCTION 

The stress concentration problem of a cylindrical bar with a circumferential notch (Pi. 
1) is mainly used in practice for the design of shafts. It is also important with respect 
to the rotating bending fatigue test which has been used to investigate fatigue strength 
of metals. Since there have been no exact solutions of this problem, so-called Neuber’s 
trigonometric rule[ l] has been used for a long time in order to estimate stress concen- 
tration approximately. The stress concentration charts by Peterson[Z] and Nisida[3], 
which were made on the basis of Neuber’s value, have been also used. Although these 
charts have been used frequently in designs or researches, there have been few dis- 
cussions about their accuracy. By the recent results of a strain gauge measurement[4] 
and analyses of finite element method[5, 61, it was suggested that Neuber’s rule might 
have a non-conservative error. In the case of the tension problem, it was found that 
the maximum error was about 10%[7]. Accurate stress concentration factors and ac- 
curate stress distributions are required for the quantitative estimation of fatigue notch 
effect (or size effect) and for studying in detail the fatigue mechanism which is expected 
to be solved with the recent development of the experimental technique. Moreover, 
the author’s review of the previous papers on fatigue notch effect has revealed that 
there are several data in which the fatigue limit of notched specimen u,,,~ is smaller 
than the value obtained by dividing the fatigue limit of plain specimen cr& by the stress 
concentration factor (SCF) K,. Such data (u,,., c o,JK,) are unreasonable except for 
special conditions. Then the reliability of such experimental data have to be checked 
by the estimation based on an exact stress concentration factor K,. Usually, uWl is 
fairly larger than u,,dKI. However hard steels have a tendency that unjI is nearly equal 
to u,,dK,. Therefore the unreasonable fatigue data on hard steels should be reviewed. 
In this paper, from these viewpoints, the calculated stress concentration factors will 
be compared with the values obtained by Neuber’s trigonometric rule, and the effects 
of notch form on the stress distribution near the notch root will be also discussed. Not 

+ Professor. 
$ Graduate student. Current position and address: Lecturer, Department of Mechanical Engineering, 

Kyushu Institute of Technology. Tobata. Kitakyushu. 812 Japan. 

39 



40 Y. MURAKAMI, N. NODA and H. NISITANI 

I 

-r 

Fig. 1. A cylindrical bar with a semi-elliptical circumferential notch under bending. 

only the maximum stress (factor 1) but the stress distribution (factor 2) near the notch 
root is significant for fatigue notch effect. The viewpoint that considers the importance 
‘of these two factors in notch effect is consistent with that of stress intensity factor in 
crack problems. 

In the first paper[9], the basic theory of body force method was developed for the 
stress concentration analysis of an axi-symmetrical body under bending and it was 
applied to a couple of simple problems. Consequently, it was concluded that three 
types of ring forces in r, 9 and z directions with the intensity of cos 4 or sin + were 
necessary and sufficient as the fundamental solutions to solve bending problems of an 
axi-symmetric body in similar manner as tension or torsion problems. In the present 
paper, the basic theory established in the first paper[9] is applied to the stress analysis 
of a cylindrical bar with a semi-elliptical circumferential notch under bending. Since a 
bending problem of a cylindrical bar with a circumferential notch is more difficult than 
tension or torsion problems, a few papers have been reported. On the analysis of semi- 
circular notch, Kikukawa and Sato obtained the stress concentration factors by using 
the strain gauge method[4] and the finite element method (FEM)[S]. Mayr, Drexler and 
Kuhn[lOj analyzed the problem by the boundary element method (BEM). The recent 
development of FEM has enabled us to solve approximately almost all elasticity prob- 
lems. However, FEM is unsuitable for systematic calculation of SCF K, under various 
geometrical conditions. In the present paper, SCF K, of semi-elliptical notch are sys- 
tematically calculated and exact tables and charts of K, for designs or researches are 
shown. 

2. METHOD OF ANALYSIS 

In the first paper[9], the basic theory of the body force method applied to the 
problems of an axi-symmetrical body under bending, and the solutions of several simple 
problems were shown. The problems treated in the present paper are solved in a similar 
manner in principle as in the first paper by using three types of ring forces as funda- 
mental solutions. Namely, the solution of a cylindrical bar having a boundary condition 
in Fig. 1 can be obtained by distributing three types of fundamental solutions (in Figs. 
2-4) along the boundaries which is imagined in an infinite body and is expected to 
become a traction-free cylindrical surface and circumferential notch. The intensities 
of distributed ring forces are determined from the boundary conditions. It was shown 
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Fig. 2. A ring force with intensity cos $ in rdirection. 
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Fig. j. A ring force with intensity sin + in s-direction. 

Fig. 4. A ring force with intensity cos 4 in z-direction. 

in the basic theory of the first paper[9] that only one longitudinal section for satisfying 
boundary conditions had to be considered and consequently the problem could be 
treated in a similar manner as a two-dimensional case. However, additional improve- 
ments are necessary in the distribution of body forces or the divisions of boundaries 
in order to obtain exact solutions in the problems of the present report, because traction- 
free boundary conditions must be satisfied along both the cylindrical surface and the 
circumferential notch. 

2.1. Boundaq conditions 
The boundary conditions of the problem in Fig. 1 are as follows: 

(a) r = D/2, b d ) z 1 I xc; (or = 7, = ~fi = 0, 

(b) along the surface of a semi-elliptical circumferential notch (n: normal direc- (1) 
tion, t: tangential direction, 8: circumferential direction); on = l,,, = T,,,, = 
0, 

(c) 0 I r 5 D/2, 1 i 1 = =; CJ; = UC, (2r/d) cos 8 (Other stresses vanish.) 

where. a0 is a constant which means the intensity of the applied bending stress. The 
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bending moment is loaded such that uZ has the maximum value at 0 = 0. the minimum 
value at 0 = IT and zero at 0 = ~r/2 and 9 = 3~/2. u,, is the normal stress in normal 
direction, ~,,e is the shear stress in meridian direction and T,,~ is the shear stress in 
circumferential direction at the boundary of the semi-elliptical circumferential notch. 
These are expressed in eqn (2) in conjunction with ur. ET,, T,.;. T,+ and TV;. 

ull = ur cos* I), + u_ sin’ *, + 27,; sin *I cos *I 

7n1 = ( -ur + 13,) sin JI1 cos IJJ, + 7,; (co? $1 - sin’ *I) (2) 

Tne = TV 1 cos JII 1 + 7ez sin *, 

where +, is the angle made by the r-axis and the normal direction of the semi-ellipse 
of the notch shape. 

2.2. Definition of the density of the body force 
The densities pl, pe and pZ of the body force distributed in r, 8 and z direction are 

defined in eqn (3), (4): 

along the circumferential notch; 

pr cos * = - 
dFe 

PO sin JI = - 
d dF- 

t dt dJr’ t ds dJI ’ 
pz cos * = - A 

2t t dt &JJ 

along the cylindrical surface; 

dFr 
pr cos JI = - 

dFe dF, 
t d< d+ ’ 

Pfj sin JI = - 
t dc dJI ’ 

pz cos JI = - 
t d5 d+ 

(3) 

(4) 

where dF,, dFe and dFZ denote the r-, 8- and z-component of the point forces distributed 
along the infinitesimal curved area t d+ ds (ds = k’?dt)* + (d&)*), and (t, 4, 5) is a 
cylindrical coordinate of a point where point forces act. The definition of pZ in eqn (3) 
is defined considering the bending stress field uZ = u0 (2rld) cos +. 

2.3. Method for dividing boundaries and distributing body forces 

In Fig. 5, a cylindrical surface and a troidal surface having an elliptical cross section 
which represents notch form are shown. We define the boundaries (the dotted line in 
Fig. 5) by those infinitesimally near the boundaries where the boundary conditions are 
to be satisfied. Body forces are distributed along these boundaries. It is difficult to 
determine in closed forms the body force densities which satisfy the boundary con- 
ditions completely. Therefore, the boundaries are divided and the problem is solved 
numerically. The values of densities of body forces, which are assumed to be constant 
in each division, are determined from the boundary condition at the midpoint of each 
division. The boundary length in z-direction O’C and O’C’ (the dimension of the spec- 
imen) in Fig. 5 is determined from the condition that the calculated results virtually do 
not change by increasing its length. The minimum value of the length O’C and O’C’ 
was about two times of outer diameter D. The divisions of cylindrical surface are set 
to be fine near the notch and coarse in proportion to the distance from the notch, that 
is, the boundary BC is divided into the sections, the length of which vary in a geometric 
series from B with the first term b and the common ratio 2 or 3. Each section is divided 
into a set of finer divisions. The boundary conditions of the cylindrical surface are 
satisfied at the midpoint of these finer divisions. On the other hand, the boundary of 
the semi-elliptical notch is divided concerning JI which is a variable in the parametric 
equations of ellipse: 

r = a cos IJJ + D/2, z = b sin 41. (5) 
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Fig. 5. A cyIi~~~ surface CBO’B’C’ and a troidaI surftv~ having an ei~pti~ cross section 
ABA’B’ imagined in an infinite body. 

Dividing the elliptic arc AB in Fig. 5 into nl divisions, we number them from A to B. 
The pair divisions in arc AB’, A’B and A’B’ are numbered the same number. The 
interval ofj-th divisions (Jlj,-$jz) are given by eqn (6). 

(6) 

If we call the division where the boundary conditions are to satisfy the i-th division, 
the coordinate of the midpoint of i-th division is given by eqn (7). 

49 = T - ; (i - 0.5) (7) 

In the troidal surface in Fig. 5, the densities of body forces distributed along the 
j-th divisions in AB, AB’, A’B and A’B’ are determined by satisfying the boundary 
conditions at the each mid~int of i-th division in AB, Body forces are applied along 
the arc A’B and A’B’ in addition to the arc AB and AB’ which should be a semi- 
ecliptics notch, because it makes the shear stress lrz at B and B’ small and consequently 
the boundary conditions can be satisfied easily. The positive directions of the body 
forces are illustrated with arrows in Fig. 5. Considering the analysis of troidal hole 
under bending reported in the first pitper, these directions are suitable to obtain accurate 
results. In the case of a very deep notch, it was found that body forces distributed at 
BA’ and B’A’ had a bad effect on the numerical results, because of the great difference 
between the curved areas of AB, AB’ and BA’, B’A’. In order to cope with such cases, 
the form of BA’B’ of the deep notch in the Fig. 5 was changed to the semi-circle with 
the radius b. 
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The division along the cyIind~c~ surface BC are numbered from B as j = ni + 
l-nl + nt. The division along B’C’ has the same number as BC from symmetry. Near 
the point B, the body force densities tend to become unbounded values because of the 
abrupt change of boundaries. Such a trend has a bad effect on the numerical results. 
In order to avoid such a effect, the linear distribution of body forces along the boundary 
O’B (and O’B’) is added to the (ni + I)-th division as shown in Fig. 6. Although only 
a body force in r-direction is shown in Fig. 6, the body forces in 6- and z-directions 
are also applied in the same way. In this way, we have fmite body force densities at 
(n, + I)-th division. 

2.4. Calculation of influence coejjkients 
In this paper, the stresses induced at the midpoint of the i-th division by the dis- 

tributed body force with unit density at the j-th division are called the influence coef- 
ficient. These stresses can be calculated by integrating the stresses o?-<:* due to 
ring forces shown in Fig. 2-Fig. 4 (fi-$2’ is given in eqns (R-(8) in the first report). 
Taking aP,d, u$‘P and UP as examples, we can write them as eqn (8), where the relation 
dt = (b/a)t’ dJI (t’ = t - D/2) and dt = (a/b)& dJI are used. 

where (JIji-Jlj2) is the interval of j-th division in the circu~erenti~ notch and (z~~-z,z) 
is that in the cylindrical surface. The integrations in eqn (8) are performed numerically 
using Simpson’s rule. The boundary stresses due to body forces at the circumferential 
notch are expressed in the forms of a$‘!, T%, . . . pP,#i by substituting the stresses 
o!Y, e;J, G3 . . . . . into eqn (2). 

2.5. ~ete~i~ation of body force densities 
The body force densities are determined by solving the following 3(ni + nz) linear 

equations. 

0 
A 

+ 
0' 

B’ 

Fig. 6. Distributing method of body forces on 0’6. 
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C (p,.&l + peJv3 + p;p$) + u. 2 sin* JI, = 0 (i = 1421) 
.i= I 

n,+fE 

2 (P,;r%i + P&x + P&x) 
j== I 

+ cro%sin+,cos*, = 0 (i = l-n,) 

n1+n2 

(i = I-nl) 

45 

(9) 

jT, (p,-3) + pa,u? + p&Y> = 0 (j = no + 1-h + n2) 

2 (p&?l$ + p&.& + p&!&J = 0 (j = III + I-n, + n*) 
j- 1 

where ri is the r-coordinate at the midpoint of the i-th division. Once the body force 
densities are determined, the stresses at an arbitrary point can easily be calculated by 
using the body force densities and the stresses at the point due to unit body force 
density which can be determined from eqn (8) in the same manner as the influence 
coefficients. 

2.6. Fundamental equations 
The fundamental equations of stress field due to ring forces shown in Fig, 2-Fig. 

4, which are necessary for calculating u$, UP. . . . in eqn (9), are given by eqns (5)- 
(8) in the first paper[9]. These are not written in the present paper to avoid overlap. 

3. NUMERICAL RESULTS AND DISCUSSION 

A computer program for the analysis of a cylindrical bar with a semi-elliptical 
circumferential notch was coded on the basis of the procedures for the numerical anal- 
ysis described in Section 2. The integral in eqn (8) was numerically performed by 
Sympson’s rule with 10 dividing numbers. When the body forces are distributed along 
the division under consideration of boundary condition (i.e. i = ~3, or when the max- 
imum stresses at the end of major axis must be calculated, the numbers of divisions 
for numerical integral was increased by lO-times as that of other case. Stress concen- 
tration factors (SCF) KI were determined from the maximum stress u,, and the nom- 
inal stress un calculated from the bending moment M which were obtained by integrating 
the stresses cr&) at the minimum section OA in Fig. 5. Therefore, it follows: 

M = 4 L’” CD u,(r)? cos* 8 de dr 

32M K,2=, a,=_ 

0, a d3 * (11) 

In the subsequent sections, SCF obtained in this way are tabulated and illustrated with 
the attention to the effects of two parameters; the notch depth to and the notch root 
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radius p. to and p are expressed with the major and minor axis of a semi-ellipse (a and 
b) as to =aandp= b2/a. Poisson’s ratio is assumed to be 0.3. 

3.1. Variation of stress concentration factors with increasing dividing numbers nl 

and n2 
Table 1 shows examples of stress concentration factors calculated for various di- 

viding numbers nl (notch) and n2 (cylindrical surface). The symbol ~6-8 means the 
extrapolated value using the results for nl = 6 and 8. Although the numbers of divisions 
nl and n2 were naturally restricted by the computer capacity, the accuracy of the 
numerical results discussed below were checked in the same manner as Table 1. The 
authors assure the error in the present analysis is less than 1% for the worst cases, 
and less than 0.1% for most cases. 

3.2. SCF of semi-circular circumferential notch 
In Table 2, SCFs of semi-circular notch are compared with the results by other 

researches. Neuber’s trigonometric rule has about 5% error in case of a shallow notch. 
The experimental value of Kikukawa and Sato[4], which were obtained by strain gauge 
measurement, are in good agreement with the present results. SCFs in Table 2 are 
plotted in Fig. 7. As 2plD + 0, SCF of semi-circular notch approaches the value K, 
= 3.065[11] which is SCF of a semi-circular notch in a semi-infinite plate under tension. 
And as 2plD + 1, SCF approaches the value K, = 1. In Fig. 7, the numerical results 
by Mayr, Drexler and Kuhn[lO] are also plotted. Their results tend to have large error 
for the large value of 2plD. 

Table I. Variation of stress concentration factors with increasing dividing 
numbers nr and n2(v = 0.3, to = a, p = b2/a) 

2plD = 0.03 2plD = 0.2 

2tclD nr n2 Kt nt n2 Kl 

: 42 36 3.794725 3.793850 : 2 1.787203 1.786952 
0.3 12 72 3.795277 12 60 I .786737 

cobs 3.797 3068 1.786 
=k-12 3.7% %-I2 1.786 

1; 40 60 2.659077 2.662158 12 8 : 1.380065 1.382803 
0.7 16 80 2663327 16 64 1.384048 

=n-12 2.668 306-12 1.388 
0112-16 2.667 =12-16 1.388 

Table 2. Stress concentration factors of a cylindrical bar 
with a semi-circular circumferential notch under bending 

(v = 0.3) 

2plD 
Present 
analysis [41 [51 Neuber 

0.02 2.877 - - 2.82 
0.03 2.790 - - 2.73 
0.05 2.630 - - 2.56 
0.1 2.306 

2;6 
- 2.21 

l/9 2.245 2.27 2.15 
4129 2.112 2.13 - 2.01 
0.2 1.858 1.86 1.87 1.77 
0.3 1.575 - - 1.53 
113 1.504 I so 1.53 1.47 
0.4 1.390 - - 1.37 
0.5 1.269 1.27 1.29 1.26 
0.6 1.183 - - 1.18 
2l3 1.139 1.14 - 1.14 
0.8 1.072 - - 1.07 
0.9 1.032 - - 1.03 
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Fig. 7. Stress concentration factor of a cylindrical bar with a semi-circular circumferential notch 
under bending (v = 0.3). 

3.3. SCF of semi-elliptical circumferential notch 
In Table 3, SCFs of semi-elliptical notch and corresponding values by Neuber’s 

trigonometric rule are shown. The present results in Table 3 were obtained by the 
extrapolation from the results of nl = 8-16 and n2 = 40-80. By systematic calculation 
shown in Table 3 and Fig. 8, it may be concluded that Neuber’s trigonometric rule has 
about 7% of non-conservative error for the wide range of notch depth. The charts of 
SCF are also shown in different way in Figs, 9 and 10, where the abscissa is 2plD. 
Using these charts (Fig. &IO), SCF K, not calculated in the present paper will be 
estimated. 

3.4. Stress distribution near notch root 
Figs. 1 l-13 show the stress distributions near the root of notch at a minimum 

section. The ordinates represents the dimensionless stress uz/crmax, where urnax denotes 
the maximum stress at the root of notch. The abscissa represents the dimensionless 
distance x/p from the notch root. We find from these figures that the dimensionless 
stress distributions near the root of a notch are approximately independent of the var- 
iation of notch depth, if the notch root radius is kept constant. 

Concerning the study of notch effect or size effect in rotating bending fatigue test, 
Nisitani[ 121 proposed a method to determine the fatigue limit of the notched specimen 
of an arbitrary size from the experimentally verified facts; (1) the root radius of a notch 
at the branch point p. is a material constant and independent of the notch depth, and 
(2) the maximum stress amplitude (K,u,,.~) at the notch root at the fatigue limit based 
on crack initiation is a unique function of the stress gradient at the notch root. And 
then. he pointed out that the notch root radius p was a most important controlling 
factor in the notch effect (or size effect). because the stress distribution near the notch 
root was almost completely determined by the notch root radius. In his paper[l2], this 
was discussed using Neuber’s solutions. As seen in Figs. 11-13, his finding has been 
confirmed more accurately and concretely by the present analysis. 
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Y 

b 
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2 
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Fig. 8. Stress concentration factor of a cylindrical bar with a semi-elliptical circumferential 
notch under bending (v = 0.3, to = O, p = b’la). 

20/D 

Fig. 9. Stress concentration factor of a cylindrical bar with a semi-elliptical circumferential 
notch under bending. 

SAS 22:1-o 
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2 

1 

Fig. 10. Stress concentration factor of a cylindrical bar with a semi-elliptical circumferential 
notch under bending. 

0.0 t I I I I I I I I 1 
0.0 0.5 

XlP 
1.0 

Fig. I I. Stress distribution near the root of notch (in case of a sharp notch). 
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Fig. 12. Stress distribution near the root of notch. 

3.5. Review of the experimental data about notch eflect in the rotating bending 
fatigue test 

As already described in Section 1, in the previous studies about the fatigue notch 
effect, there are several data in which the fatigue limit of a notched specimen crWl is 
smaller than the value of the fatigue limit of a plane specimen U,+Q divided by SCF K,, 
i.e. owl < a,dK,. Not only the maximum stress but also the stress gradient is a im- 
portant factor controlling the crack initiation at the root of the notch. From this view- 
point, these data showing uwl c u,,JK, are unreasonable, because the stress gradient 

1.0 

I O-O 0.0 
I I I 1 I I 1 I I 

0.5 
I 

X/P 1.0 

Fig. 13. Stress distribution near the root of notch (in case of a blunt notch). 
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Table 4. Review of the experimental data about notch effect in the rotating fatigue test (o,,,,. cr,_.,,: !qf 
mm’) 

SCF used 
in the SCF 

experiment obtained by 
2plD 2tdD K; authors K, u,,o o,dK; u,,JK, us, 1 material 

Nishioka et 0.04 l/3 3.1 3.282 43 13.9 13.1 13 9% nickel steel 
a/.[131 ” ” ” 0 56 18.1 17.1 17 

,, I, ,I 0 45 14.5 13.7 14 
n I, I, ,I 60 19.4 18.3 18 

Shhnizu er l/15 l/3 2.20 2.651 50 22.7 18.9 20 induction 
01.[14] hardened 

0.15% carbon 
steel 

of the notched specimen is steeper than that of the plane specimen with the same 
minimum cross section. In the following, several experimental values are reviewed 
using an accurate SCF K, obtained in the present paper. 

Table 4 shows several examples of experimental data showing u,,.~ < u,,.OIK,. The 
experiment by Nishioka, Hirakawa and Toyama[l3] was carried out on the !9% nickel 
steel at room- or low-temperature. If we use Neuber’s value K; = 3.1 in order to 
estimate the stress concentrations of the notched specimens, these experimental data 
seem to be unreasonable. However, if we use SCF K, = 3.282 obtained by the present 
analysis, they can be understood reasonable. We must consider that the fatigue limits 
were determined by lkgflmmZ step in this experiment. The experiment of Shimizu, 
Nakamura and Kunio[l4] was carried out on the induction-hardened 0.15% carbon 
steel. In this case too, if we use K, = 2.651 obtained by the present analysis, u,,.l 
becomes larger than aHdKr. Other experimental data of previous researches are also 
reviewed and it was found that there were some cases where the correct Neuber’s 
value was not necessarily used because of reading error in the charts. Therefore, it 
should be noticed that the exact discussion is not likely to be done by using Neuber’s 
SCF. 

4. CONCLUSION 

Since there were no exact solutions for the problem of a cylindrical bar with a 
circumferential notch under bending, the approximate stress concentration factors 
(SCF) by Neuber’s trigonometric rule have been used for a long time for designs or 
researches. It has been accepted generally that the error of Neuber’s SCF is not so 
large. There has been few discussions hut the accuracy of Neuber’s SCF. In the 
present study, the problem was solved~erically on the basis of the basic theory 
established in the first paper. Although solutions were obtained numerically, they have 
a high accuracy and may be considered to the exact solutions for the practical use. 
The conclusions are summarized as follows: 

(1) 

(2) 

(3) 

(4) 

SCF of a cylindrical bar with a semi-elliptical circumferential notch under bend- 
ing were systematically calculated for various combination of notch dimensions. 
It was found that Neuber’s trigonometric rule has non-conservative error for 
wide range of notch depth. The error of the present analysis is less than 1% for 
the worst cases and less than 0.1% for most cases. 
The stress concentration factors were illustrated in the charts so as to be used 
easily in designs or researches. 
The effect of notch form on the stress distribution near notch root was inves- 
tigated. The stress distribution near notch root is controlled mainly by the root 
radius of a notch and is independent of other dimensions. This is the key point 
to understand notch effect or size effect[l21. 
As 2plD -P 0, SCF of the semi-circular notch approaches the value K, = 
3.065[11], which is SCF of a semi-circular notch in a semi-infinite plate under 
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tension. As 2plD + 1, SCF approaches the value K, = 1. The experimentally 
determined values by Kikukawa and Sato[4] are in good agreement with the 
present results. 
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(5) In the previous studies about the fatigue notch effect, there are some data in- 
dicating (T,,.~ < o,dK; . Apparently, they are unreasonable values. However, if 
they are reconsidered by accurate SCF K, obtained in the present paper, some 
of them become u,,.~ > owdKr and are regarded reasonable. 
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